

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-tabular-export 1.0.0 documentation

Welcome to django-tabular-export’s documentation!

Contents:

	django-tabular-export
	Documentation

	Quickstart

	tabular_export
	tabular_export package

	License

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	Changelog
	v1.0.1 (2016-03-04)

	v1.0.0 (2016-03-04)

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

django-tabular-export

[image: Landscape.io Code Quality]
 [https://landscape.io/github/LibraryOfCongress/django-tabular-export/master][image: https://travis-ci.org/LibraryOfCongress/django-tabular-export.png?branch=master]
 [https://travis-ci.org/LibraryOfCongress/django-tabular-export]Simple spreadsheet exports from Django

Documentation

This module contains functions which take (headers, rows) pairs and return HttpResponses with either XLSX or
CSV downloads and Django admin actions which can be added to any ModelAdmin for generic exports. It provides
two functions (export_to_csv_response and export_to_xlsx_response) which take a filename,
a list of column headers, and a Django QuerySet, list-like object, or generator and return a response.

Goals

	This project is not intended to be a general-purpose spreadsheet manipulation library. The only goal is to
export data quickly and safely.

	The API is intentionally simple, giving you full control over the display and formatting of headers or your
data. flatten_queryset has special handling for only two types of data: None will be converted to an
empty string and date or datetime instances will serialized using isoformat(). All
other values will be specified as the text data type to avoid data corruption in Excel if the values happen
to resemble a date in the current locale.

	Unicode-safety: input values, including lazy objects, are converted using Django’s
force_text [https://docs.djangoproject.com/en/1.9/ref/utils/#django.utils.encoding.force_text]
function and will always be emitted as UTF-8

	Performance: the code is known to work with data sets up to hundreds of thousands of rows. CSV responses
use StreamingHttpResponse, use minimal memory, and start very quickly. Excel (XLSX) responses cannot be
streamed but xlsxwriter [https://pypi.python.org/pypi/XlsxWriter] is one of the faster implementations
and its memory-size optimizations are enabled.

Quickstart

Install django-tabular-export:

pip install django-tabular-export

Then use it in a project:

from tabular_export import export_to_csv_response, export_to_xlsx_response, flatten_queryset

def my_view(request):
 return export_to_csv_response('test.csv', ['Column 1'], [['Data 1'], ['Data 2'], …])

def my_other_view(request):
 headers = ['Title', 'Date Created']
 rows = MyModel.objects.values_list('title', 'date_created')
 return export_to_excel_response('items.xlsx', headers, rows)

def export_using_a_generator(request):
 headers = ['A Number']

 def my_generator():
 for i in range(0, 100000):
 yield (i,)

 return export_to_excel_response('numbers.xlsx', headers, my_generator())

def export_renaming_columns(request)
 qs = MyModel.objects.filter(…).select_related(…)
 headers, data = flatten_queryset(qs, field_names=['title', 'related_model__title_en'],
 extra_verbose_names={'related_model__title_en': 'English Title'})
 return export_to_csv_response('custom_export.csv', headers, data)

Admin Integration

There are two convenience admin actions [https://docs.djangoproject.com/en/1.9/ref/contrib/admin/actions/]
which make it simple to add “Export to Excel” and “Export to CSV” actions:

from tabular_export.admin import export_to_csv_action, export_to_excel_action

class MyModelAdmin(admin.ModelAdmin):
 actions = (export_to_excel_action, export_to_csv_action)
 …

The default columns will be the same as you would get calling values_list on your ModelAdmin‘s default
queryset as returned by ModelAdmin.get_queryset(). If you want to customize this, simply declare a new
action on your ModelAdmin which does whatever data preparation is necessary:

from tabular_export.admin import export_to_excel_action

class MyModelAdmin(admin.ModelAdmin):
 actions = ('export_batch_summary_action',)

 def export_batch_summary_action(self, request, queryset):
 headers = ['Batch Name', 'My Computed Field']
 rows = queryset.annotate(…).values_list('title', 'computed_field_name')
 return export_to_excel_response('batch-summary.xlsx', headers, rows)
 export_batch_summary_action.short_description = 'Export Batch Summary'

Debugging

The TABULAR_RESPONSE_DEBUG = True setting will cause all views to return HTML tables

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

tabular_export

	tabular_export package
	Submodules
	tabular_export.admin module

	tabular_export.core module

	Module contents

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

 	tabular_export

tabular_export package

Submodules

	tabular_export.admin module

	tabular_export.core module

Module contents

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

 	tabular_export

 	tabular_export package

tabular_export.admin module

Usage can be as simple as adding the generic actions to a ModelAdmin:

actions = (export_to_excel_action, export_to_csv_action)

These will take the QuerySet and provide a generic export action which is essentially what you’d from the
values() method. The filename will be generated from the model name specified for that ModelAdmin.

The allow you to pass a custom file filename or list of fields which are passed through directly to
flatten_queryset() and export_to_excel_response() / export_to_csv_response()

	
tabular_export.admin.ensure_filename(suffix)[source]

	Decorator which automatically sets the filename going into the admin actions
from the ModelAdmin.model‘s verbose_name_plural value unless a value
was provided by the caller.

	
tabular_export.admin.export_to_csv_action(modeladmin, request, queryset, filename=None, *args, **kwargs)[source]

	Django admin action which exports the selected records as a CSV download

	
tabular_export.admin.export_to_excel_action(modeladmin, request, queryset, filename=None, *args, **kwargs)[source]

	Django admin action which exports selected records as an Excel XLSX download

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

 	tabular_export

 	tabular_export package

tabular_export.core module

Exports to tabular (2D) formats

This module contains functions which take (headers, rows) pairs and return HttpResponses with either XLSX or
CSV downloads

The export_to_FORMAT_response functions accept a filename, and headers and rows. This allows
full control over the data using non-database data-sources, the Django ORM’s various aggregations and
optimization methods, generators for large responses, control over the column names, or post-processing
using methods like get_FOO_display() to format the data for display.

The flatten_queryset utility used to generate lists from QuerySets intentionally does not attempt to
handle foreign-key fields to avoid performance issues. If you need to include such data, prepare it in
advance using whatever optimizations are possible and pass the data in directly.

If your Django settings module sets TABULAR_RESPONSE_DEBUG to True the data will be dumped as an HTML
table and will not be delivered as a download.

	
class tabular_export.core.Echo[source]

	Bases: object

	
write(value)[source]

	

	
tabular_export.core.convert_value_to_unicode(v)[source]

	Return the UTF-8 bytestring representation of the provided value

date/datetime instances will be converted to ISO 8601 format
None will be returned as an empty string

	
tabular_export.core.export_to_csv_response(filename, *args, **kwargs)[source]

	Returns a downloadable StreamingHttpResponse using an CSV payload generated from headers and rows

	
tabular_export.core.export_to_debug_html_response(filename, headers, rows)[source]

	Returns a downloadable StreamingHttpResponse using an HTML payload for debugging

	
tabular_export.core.export_to_excel_response(filename, *args, **kwargs)[source]

	Returns a downloadable HttpResponse using an XLSX payload generated from headers and rows

	
tabular_export.core.flatten_queryset(qs, field_names=None, extra_verbose_names=None)[source]

	Return a tuple of named column headers and a list of data values

By default headers will use the keys from qs.values() and rows will use the more-efficient
values_list().

If a list of field_names are passed, only the included fields will be returned.

An optional dictionary of extra_verbose_names may be passed to provide friendly names for fields and
will override the field’s verbose_name attribute if present. This can be used to provide proper names
for related lookups (e.g. {“institution__title”: “Institution”}) or calculated values
(e.g. {“items__count”: “Item Count”}).

	
tabular_export.core.force_utf8_encoding(f)[source]

	

	
tabular_export.core.get_field_names_from_queryset(qs)[source]

	Return a list of field names for a queryset, including extra and aggregate columns

	
tabular_export.core.return_debug_reponse(f)[source]

	Returns a debugging-friendly HTML response when TABULAR_RESPONSE_DEBUG is set

	
tabular_export.core.set_content_disposition(f)[source]

	Ensure that an HttpResponse has the Content-Disposition header set using the input filename= kwarg

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

License

Creative Commons Legal Code

CC0 1.0 Universal

 CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
 LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
 ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
 INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
 REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
 PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
 THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
 HEREUNDER.

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").

Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.

For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:

 i. the right to reproduce, adapt, distribute, perform, display,
 communicate, and translate a Work;
 ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
 likeness depicted in a Work;
 iv. rights protecting against unfair competition in regards to a Work,
 subject to the limitations in paragraph 4(a), below;
 v. rights protecting the extraction, dissemination, use and reuse of data
 in a Work;
 vi. database rights (such as those arising under Directive 96/9/EC of the
 European Parliament and of the Council of 11 March 1996 on the legal
 protection of databases, and under any national implementation
 thereof, including any amended or successor version of such
 directive); and
vii. other similar, equivalent or corresponding rights throughout the
 world based on applicable law or treaty, and any national
 implementations thereof.

2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.

3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.

4. Limitations and Disclaimers.

 a. No trademark or patent rights held by Affirmer are waived, abandoned,
 surrendered, licensed or otherwise affected by this document.
 b. Affirmer offers the Work as-is and makes no representations or
 warranties of any kind concerning the Work, express, implied,
 statutory or otherwise, including without limitation warranties of
 title, merchantability, fitness for a particular purpose, non
 infringement, or the absence of latent or other defects, accuracy, or
 the present or absence of errors, whether or not discoverable, all to
 the greatest extent permissible under applicable law.
 c. Affirmer disclaims responsibility for clearing rights of other persons
 that may apply to the Work or any use thereof, including without
 limitation any person's Copyright and Related Rights in the Work.
 Further, Affirmer disclaims responsibility for obtaining any necessary
 consents, permissions or other rights required for any use of the
 Work.
 d. Affirmer understands and acknowledges that Creative Commons is not a
 party to this document and has no duty or obligation with respect to
 this CC0 or use of the Work.

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/LibraryOfCongress/django-tabular-export/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-tabular-export could always use more documentation, whether as part of the
official django-tabular-export docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/LibraryOfCongress/django-tabular-export/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-tabular-export for local development.

	Fork the django-tabular-export repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-tabular-export.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-tabular-export
$ cd django-tabular-export/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 tabular_export tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/LibrLibraryOfCongressCongress/django-tabular-export/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_tabular_export

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

Credits

Development Lead

	Chris Adams <cadams@loc.gov>

Contributors

None yet. Why not be the first?

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-tabular-export 1.0.0 documentation

Changelog

v1.0.1 (2016-03-04)

Fix

	CSV UTF-8 regression introduced with Python 3 support. [Chris Adams]

The refactor to add Python 3 support to the long-running Python 2
version introduced a regression for Unicode handling with CSV output.

v1.0.0 (2016-03-04)

	Initial Release. [Chris Adams]

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-tabular-export 1.0.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tabular_export	

 	
 	
 tabular_export.admin	

 	
 	
 tabular_export.core	

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-tabular-export 1.0.0 documentation

Index

 C
 | E
 | F
 | G
 | R
 | S
 | T
 | W

C

 	

 	convert_value_to_unicode() (in module tabular_export.core)

E

 	

 	Echo (class in tabular_export.core)

 	ensure_filename() (in module tabular_export.admin)

 	export_to_csv_action() (in module tabular_export.admin)

 	export_to_csv_response() (in module tabular_export.core)

 	

 	export_to_debug_html_response() (in module tabular_export.core)

 	export_to_excel_action() (in module tabular_export.admin)

 	export_to_excel_response() (in module tabular_export.core)

F

 	

 	flatten_queryset() (in module tabular_export.core)

 	

 	force_utf8_encoding() (in module tabular_export.core)

G

 	

 	get_field_names_from_queryset() (in module tabular_export.core)

R

 	

 	return_debug_reponse() (in module tabular_export.core)

S

 	

 	set_content_disposition() (in module tabular_export.core)

T

 	

 	tabular_export (module)

 	tabular_export.admin (module)

 	

 	tabular_export.core (module)

W

 	

 	write() (tabular_export.core.Echo method)

 Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-tabular-export 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

_static/down.png

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-tabular-export 1.0.0 documentation »

 All modules for which code is available

		tabular_export.admin

		tabular_export.core

 © Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

_modules/tabular_export/core.html

 Navigation

 		
 index

 		
 modules |

 		django-tabular-export 1.0.0 documentation »

 		Module code »

 Source code for tabular_export.core

encoding: utf-8
"""Exports to tabular (2D) formats

This module contains functions which take (headers, rows) pairs and return HttpResponses with either XLSX or
CSV downloads

The ``export_to_FORMAT_response`` functions accept a ``filename``, and ``headers`` and ``rows``. This allows
full control over the data using non-database data-sources, the Django ORM's various aggregations and
optimization methods, generators for large responses, control over the column names, or post-processing
using methods like ``get_FOO_display()`` to format the data for display.

The ``flatten_queryset`` utility used to generate lists from QuerySets intentionally does not attempt to
handle foreign-key fields to avoid performance issues. If you need to include such data, prepare it in
advance using whatever optimizations are possible and pass the data in directly.

If your Django settings module sets ``TABULAR_RESPONSE_DEBUG`` to ``True`` the data will be dumped as an HTML
table and will not be delivered as a download.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import csv
import datetime
import sys
from functools import wraps
from itertools import chain

import xlsxwriter
from django.conf import settings
from django.http import HttpResponse, StreamingHttpResponse
from django.utils.encoding import force_text
from django.utils.http import urlquote
from django.views.decorators.cache import never_cache

[docs]def get_field_names_from_queryset(qs):
 """Return a list of field names for a queryset, including extra and aggregate columns"""

 # We'll set the queryset to include all fields including calculated aggregates
 # using the same names which a values() queryset would return:
 if hasattr(qs, 'values'):
 v_qs = qs.values()
 else:
 v_qs = qs

 field_names = []
 field_names.extend(i.target.name for i in v_qs.query.select)
 field_names.extend(v_qs.query.extra_select.keys())
 field_names.extend(v_qs.query.aggregate_select.keys())

 return field_names

[docs]def flatten_queryset(qs, field_names=None, extra_verbose_names=None):
 """Return a tuple of named column headers and a list of data values

 By default headers will use the keys from ``qs.values()`` and rows will use the more-efficient
 ``values_list()``.

 If a list of ``field_names`` are passed, only the included fields will be returned.

 An optional dictionary of ``extra_verbose_names`` may be passed to provide friendly names for fields and
 will override the field's ``verbose_name`` attribute if present. This can be used to provide proper names
 for related lookups (e.g. `{"institution__title": "Institution"}`) or calculated values
 (`e.g. {"items__count": "Item Count"}`).
 """

 if field_names is None:
 field_names = get_field_names_from_queryset(qs)

 # Headers will use the verbose names where available and fall back to the field name
 # if not (e.g. custom aggregate or extra fields):
 verbose_names = {i.name: i.verbose_name for i in qs.model._meta.fields}
 if extra_verbose_names is not None:
 verbose_names.update(extra_verbose_names)

 headers = [verbose_names.get(i, i) for i in field_names]

 return headers, qs.values_list(*field_names)

[docs]def convert_value_to_unicode(v):
 """Return the UTF-8 bytestring representation of the provided value

 date/datetime instances will be converted to ISO 8601 format
 None will be returned as an empty string
 """

 if v is None:
 return u''
 elif hasattr(v, 'isoformat'):
 return v.isoformat()
 else:
 return force_text(v)

[docs]def set_content_disposition(f):
 """Ensure that an HttpResponse has the Content-Disposition header set using the input filename= kwarg"""
 @wraps(f)
 def inner(filename, *args, **kwargs):
 response = f(filename, *args, **kwargs)
 # See RFC 5987 for the filename* spec:
 response['Content-Disposition'] = "attachment; filename*=UTF-8''%s" % urlquote(filename)
 return response
 return inner

[docs]def return_debug_reponse(f):
 """Returns a debugging-friendly HTML response when TABULAR_RESPONSE_DEBUG is set"""

 @wraps(f)
 def inner(filename, *args, **kwargs):
 if not getattr(settings, 'TABULAR_RESPONSE_DEBUG', False):
 return f(filename, *args, **kwargs)
 else:
 resp = never_cache(export_to_debug_html_response)(filename, *args, **kwargs)
 del resp['Content-Disposition'] # Don't trigger a download
 return resp

 return inner

[docs]def export_to_debug_html_response(filename, headers, rows):
 """Returns a downloadable StreamingHttpResponse using an HTML payload for debugging"""

 def output_generator():
 # Note the use of bytestrings to avoid unnecessary Unicode-bytes cycles:
 yield b'<!DOCTYPE html><html>'
 yield b'<head><meta charset="utf-8"><title>TABULAR DEBUG</title>'
 yield b'<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">'
 yield b'</head>'
 yield b'<body class="container-fluid"><div class="table-responsive"><table class="table table-striped">'
 yield b'<thead><tr><th>'
 yield b'</th><th>'.join(convert_value_to_unicode(i).encode('utf-8') for i in headers)
 yield b'</th></tr></thead>'

 yield b'<tbody>'
 for row in rows:
 values = map(convert_value_to_unicode, row)
 values = [i.encode('utf-8').replace(b'\n', b'
') for i in values]
 yield b'<tr><td>%s</td></tr>' % b'</td><td>'.join(values)
 yield b'</tbody>'
 yield b'</table></div></body></html>'

 return StreamingHttpResponse(output_generator(),
 content_type='text/html; charset=UTF-8')

@return_debug_reponse
@set_content_disposition
[docs]def export_to_excel_response(filename, headers, rows):
 """Returns a downloadable HttpResponse using an XLSX payload generated from headers and rows"""

 # See http://technet.microsoft.com/en-us/library/ee309278%28office.12%29.aspx
 content_type = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'

 # This cannot be a StreamingHttpResponse because XLSX files are .zip format and
 # the Python ZipFile library doesn't offer a generator form (which would also
 # not be called per-row but per-chunk)

 resp = HttpResponse(content_type=content_type)

 workbook = xlsxwriter.Workbook(resp, {'constant_memory': True,
 'in_memory': True,
 'default_date_format': 'yyyy-mm-dd'})

 date_format = workbook.add_format({'num_format': 'yyyy-mm-dd'})

 worksheet = workbook.add_worksheet()

 for y, row in enumerate(chain((headers,), rows)):
 for x, col in enumerate(row):
 if isinstance(col, datetime.datetime):
 # xlsxwriter cannot handle timezones:
 worksheet.write_datetime(y, x, col.replace(tzinfo=None), date_format)
 elif isinstance(col, datetime.date):
 worksheet.write_datetime(y, x, col, date_format)
 else:
 worksheet.write(y, x, force_text(col, strings_only=True))

 workbook.close()

 return resp

[docs]class Echo(object):
 # See https://docs.djangoproject.com/en/1.8/howto/outputting-csv/#streaming-csv-files

[docs] def write(self, value):
 return value

@return_debug_reponse
@set_content_disposition
[docs]def export_to_csv_response(filename, headers, rows):
 """Returns a downloadable StreamingHttpResponse using an CSV payload generated from headers and rows"""
 pseudo_buffer = Echo()

 writer = csv.writer(pseudo_buffer)

 def row_generator():
 yield map(convert_value_to_unicode, headers)

 for row in rows:
 yield map(convert_value_to_unicode, row)

 if sys.version_info < (3, 0):
 # On Python 2, csv.writer unconfigurably encodes unicode instances as ASCII
 # so we need to convert them to UTF-8:
 row_generator = force_utf8_encoding(row_generator)

 # This works because csv.writer.writerow calls the underlying file-like .write method
 # *and* returns the result. We cannot use the same approach for Excel because xlsxwriter
 # doesn't have a way to emit chunks from ZipFile and StreamingHttpResponse does not
 # offer a file-like handle.

 return StreamingHttpResponse((writer.writerow(row) for row in row_generator()),
 content_type='text/csv; charset=utf-8')

[docs]def force_utf8_encoding(f):
 @wraps(f)
 def inner():
 for row in f():
 yield [i.encode('utf-8') for i in row]

 return inner

 © Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

_static/plus.png

_modules/tabular_export/admin.html

 Navigation

 		
 index

 		
 modules |

 		django-tabular-export 1.0.0 documentation »

 		Module code »

 Source code for tabular_export.admin

encoding: utf-8
"""
Usage can be as simple as adding the generic actions to a ModelAdmin::

 actions = (export_to_excel_action, export_to_csv_action)

These will take the QuerySet and provide a generic export action which is essentially what you'd from the
``values()`` method. The filename will be generated from the model name specified for that `ModelAdmin`.

The allow you to pass a custom file filename or list of fields which are passed through directly to
:func:`flatten_queryset` and :func:`export_to_excel_response` / :func:`export_to_csv_response`
"""
from __future__ import absolute_import, division, print_function

from functools import wraps

from django.utils.encoding import force_text
from django.utils.translation import gettext_lazy as _

from .core import export_to_csv_response, export_to_excel_response, flatten_queryset

[docs]def ensure_filename(suffix):
 """
 Decorator which automatically sets the filename going into the admin actions
 from the ``ModelAdmin.model``'s ``verbose_name_plural`` value unless a value
 was provided by the caller.
 """
 def outer(f):
 # TODO: After upgrading to Python 3, we can drop the extra args using , *, to force keyword-only args
 @wraps(f)
 def inner(modeladmin, request, queryset, filename=None, *args, **kwargs):
 if filename is None:
 filename = '%s.%s' % (force_text(modeladmin.model._meta.verbose_name_plural), suffix)
 return f(modeladmin, request, queryset, filename=filename, *args, **kwargs)
 return inner
 return outer

@ensure_filename('xlsx')
[docs]def export_to_excel_action(modeladmin, request, queryset, filename=None, field_names=None):
 """Django admin action which exports selected records as an Excel XLSX download"""
 headers, rows = flatten_queryset(queryset, field_names=field_names)
 return export_to_excel_response(filename, headers, rows)

export_to_excel_action.short_description = _('Export to Excel')

@ensure_filename('csv')
[docs]def export_to_csv_action(modeladmin, request, queryset, filename=None, field_names=None):
 """Django admin action which exports the selected records as a CSV download"""
 headers, rows = flatten_queryset(queryset, field_names=field_names)
 return export_to_csv_response(filename, headers, rows)

export_to_csv_action.short_description = _('Export to CSV')

 © Copyright 2016, Chris Adams.
 Created using Sphinx 1.3.5.

